Today’s legislation on exhaust gas emissions for heavy duty diesel (HDD) vehicles is more stringent than ever and will be even more tough in the future. More over, in a few years HDD vehicles have to be equipped with OBD (On-Board Diagnostics). This place very high demands on the manufacturers to develop better engines and strategies for OBD. As an aid in the process models can be used.This thesis presents extensions of an existing diesel engine model in Matlab/Simulink to be able to simulate emissions during standardized european test cycles. Faults in the sensor and actuator signals are implemented into the model to find out if there is an increase or decrease in the emissions. This is used to create a fault tree where it can be seen why predefined emission thresholds are exceeded…
Contents
1 Introduction
1.1 Objectives
1.2 On-Board Diagnostics
1.3 European Test Cycles
1.3.1 European Stationary Cycle
1.3.2 European Transient Cycle
2 Engine Model and Extensions
2.1 Engine Model
2.2 Extensions
2.2.1 Engine Control Unit
2.2.2 Emissions
2.2.3 Engine Torque
2.2.4 Testcell Control
3 Fault Modelling and Analysis
3.1 Fault Modelling
3.2 Fault Simulations
3.2.1 Gain Faults
3.2.2 Bias Faults
3.2.3 Sensors or Actuators get Stuck
3.2.4 Other Faults
3.3 Fault Tree
4 Further Model Improvements
4.1 Emissions
4.2 Torque
5 Conclusions
viiNotation
A Original Engine Model
Copyright
Author: Adolfson, Magnus
Source: Linköping University
Download URL 2: Visit Now